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LETTER TO THE EDITOR 

The integrity bases of universal enveloping algebras and the 
generalised exponents 

H Scutaru 
Department of Theoretical Physics, Central Institute of Physics, PO Box MG-6, Bucharest, 
Romania 

Received 6 June 1988, in final form 22 December 1988 

Abstract. We obtain the generalised exponents of the Lie algebra sI(3, C )  by a method due 
to Kostant. Using this result we prove the hypothesis of Couture and Sharp about the 
existence of an integrity basis of the universal eveloping algebra of the sI(3, C) algebra, 
considered as an sI(3, C )  module. 

The L-module structure of the universal enveloping algebra U( L) of a semisimple Lie 
algebra L was shown to be completely described by the generalised exponents in the 
fundamental paper [ 13 by Kostant. This structure appears to be significant in the study 
of the physical models with dynamical symmetries [2]. 

Let Z (  L) denote the centre of U( L), D denote the set of dominant weights of L, 
V, ( A E  D )  denote the simple L module with the highest weight A and M ( A )  denote 
the multiplicity of the weight 0 of V,. Then [ 1,3] the Z (  L )  module HomL( V,, U( L ) )  
has a basis formed of M ( A )  homogeneous elements. The degrees of these homogeneous 
elements ml(A) d m,(A) G . . . G mMM(,) (A)  are independent of the choice of the basis 
and are called the generalised exponents of the L module V,. In the paper [ 13 Kostant 
has given the following recipe for the calculation of the generalised exponents. If 
sl(2, C) = @e + @ f + @ h  is a principal Lie subalgebra of L [3] ([e,fl = h, [h,  e] = e, 
[h , f l=  -f) then the generalised exponents are the eigenvalues of h restricted to the 
subspace W of V, the elements of which vanish under Le (the centraliser of e in L; 
Le = {x E L; [x, e] = 0)). 

We shall apply this recipe to the particular case L = sl(3, C).  The fundamental 
weights of sl(3, @) are denoted by A, and A2.  Then D = {A; A = k,A, + kzA2, k,, k2 are 
integers 3 0) and Do= {A E D; max(k,, k,) -min(k,, k,) 0 (mod 3)) is the set of all 
A E D for which M ( A )  # 0. 

Theorem. Let A E  Do. Then the generalised exponents of the sl(3, @)-module V, are 
free of multiplicity and are given by 

mi(kl, k2)=max(kl, k J + i - l  

where i = 1,2, . . . , min( kl, k,) + 1. 

ProoJ: Let {a , } ,  i, j = 1,2,3,  denote a basis of the Lie algebra sl(3, C) with the Lie 
brackets 

[aij, akll = ajkail - ailajk 
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and with the constraint a,,  + a2,+ a33 = 0. The fundamental module V,, is a complex 
three-dimensional vector space. Let U,, v,,  v3 be a basis in V,, and let ey E End( V,,) 
be defined by eVvk = 8jkvj. Then the action of sl(3, C) on VAl is defined by 

ay = ey - a,( e, ,  + e2,+ e3,)/3. 

V,, = Home( V,, , C) and for any A E D the module V, is obtained from V,, and V,, 
by the Cartan-Weyl method [4]. In this way the action of s1(3,@) on V, is defined 
for any A E D. The elements of V, are labelled by the standard Young tableaux: 

1 1  . . .  1 2  . . .  2 . . .  2 3  . . .  3 

2 3  . . .  3 3  . . .  3 

4 2 2  qZ3 - q 2 2  

or by the corresponding Gel’fand-Zetlin patterns: 
913 q 2 3  0 

q12 q 2 2  ’ 

41 1 

We shall take the sl(2, C) principal subalgebra of the sl(3, C) algebra to be Ce + Cf+C h 
with e = a,, + ~ 2 3 ,  f = a2,  + a32 and h = 2al l  + aZ2 = e, ,  - e33. The centraliser sl(3, 
of the principal nilpotent element e is generated by z ,  = e and z2 = eI3. By definition 
W = ker z ,  n ker z2.  We observe that ker z2 is generated by the elements of V, which 
do not contain v3 or which contain v3 only in the antisymmetric pairs U, A v 3 .  These 
elements ui, are labelled by the Gel’fand-Zetlin patterns 

k, + kz k2 0 

kl + k2 j 

i 

with 0 c j S k2 S i S k, + k,. From the above definitions we have evidently hui,j = 

( i + j - k,) ui, and 

zlui,j = ( k l + k 2 - i ) ~ i + l , j + ( k z - j ) u i , j + l ,  

Any vector w = Z  bi,jui,j from ker z, belongs to W if and only if z,w = O .  From this 
equation we obtain the following restrictions on the coefficients bi , j :  bi,,, = 0 for i = 
k2,k2+1 , . . . ,  k,+k2; bk,, j=Oforj=O,l  ,..., k2,and 

b+,, = -( k2 - j + 1) bi,,-,/ (k, + k2 - i + 1) 

for i = k2 + 1, . . . , k, + k, and j = 1,2, . . . , k,. Because this recurrence relation conserves 
the value of i + j it follows that all coefficients bi,j with i + j equal to k,, k2 + 1, . . . , k, + k2 
or to k2, k,+ 1 , .  . . , 2k, vanish. Hence the values of i + j  for the non-vanishing 
coefficients bi,j are i +j = k,  +2k, - r with r = 0, 1, . . . , min( k,, k2) .  For each such value 
of i + j  we obtain a vector w, from W: 
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Because hw, = ( k ,  + k2 - r )  w,, r = 0,1, . . . , min( k,,  k2) ,  it follows that the vectors w, are 
linearly independent and hence that dim W = min( kl ,  k2)  + 1. The generalised 
exponents are exactly these eigenvalues taken in the increasing order and labelled 
from 1 to dim W :  mi( kl, k 2 )  = max(k,, k,) +- i - 1 where i = 1,2, . . . , min(k,, k2)  + 1. 
QED 

Remark 1 .  The result of this theorem can be obtained also as a consequence of example 
1 and the first remark of the important paper [ 5 ]  by Hesselink. 

Remark 2. As was first observed by Couture and Sharp [ 6 ]  the calculation of the 
generalised exponents is an easy task if we suppose the validity of their hypothesis 
about the existence of an integrity basis [7]. 

In order to formulate the Couture and Sharp hypothesis [7] about the existence 
of an integrity basis it is necessary to define the Cartan product h , h , ~  
Hom,( V,,, , U( L ) )  of two homomorphisms h ,  E Hom,( V,, U( L ) )  and h,  E 

Hom,( V,, U(L)). Firstly we define an element hAhn from Hom,( V,O V,, U(L)) 
associated with any pair (h , ,  ha). This is the homomorphism which applies any vector 
v , O v , ~  VAO V, into ( h ~ ( v ~ ) h ~ ( ~ ~ ) + h ~ ( v ~ ) h ~ ( v , ) ) / 2 E  U(L). The Cartan product 
V,+, of V, and V, is a simple submodule of V,O V, and let E,,,: V,,+,+ V,O V, 
be the corresponding embedding. Then hAhn = hnh, = KO E,,+, E 

HomL( V,,, , U( L ) )  will be called the Cartan product of h,, and ha.  Evidently degree 
( h,,hn) = degree h, + degree h,. 

Following Dynkin [8] we shall say that a homomorphism ha is subordinate to a 
homomorphism h ,  if there exists a non-trivial homomorphism h= such h,  = hnhE. An 
integrity basis of the monoid generated by the Cartan product on the set 
{HomL( V,, U(L)); A E Do} is defined as the set of the homomorphisms which are 
subordinate to at least one homomorphism and for which there does not exist any 
subordinate homomorphism. Hence if h,  is an element of such an integrity basis then 
the equations A = R + E with A, R, E E Do and degree hA = degree ha + degree h= do 
not have any non-trivial solution. When the generalised exponents, i.e. all possible 
values of degree hA, are known for any R E  Do we can obtain the integrity basis by a 
thorough analysis of these equations. In this way we shall prove the validity of the 
Couture and Sharp hypothesis about the existence of an integrity basis [7] in the 
particular case of the sl(3, @) algebra. This result is the following corollary of the 
above theorem. 

r 

Corollary. In the case of the Lie algebra sl(3, C )  there exists an integrity basis which 
is the union of the bases of Hom( VAIcA2, U(L)) (the basis of which contains two 
elements hA,+,2,1 and hAl+A2,2 of degree 1 and 2 respectively), of HomL( V3,,,, U(L)) 
and of Hc"V3,,, ~ ( ~ 1 1 ,  with a syzygy (hAl+A2,2)3= h3A,h3A2. 

Prooj From the equations h ,  = h,,,h,,,, with A, A', A"E Do and where A = A, +A,,  3A1, 
3A2 we obtain the following equations 2 min( k ; ,  k;)  + 2 min( ky, k,") +3n'+ 3n"= 
k, + k 2 ,  where kl + k2 = 2,3,3 respectively. From these equations it follows immediately 
that either A' = 0 or A" = 0. Hence only the trivial homomorphisms are subordinate to 
the homomorphisms listed in the corollary. Now we must prove that the elements of 
this list are subordinate to at least one homomorphism which does not belong to the 
list. In fact we shall prove more than that; namely that the equations 
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with pl, p 2 ,  p 3 ,  p4 E N U 0 and i = 1, . . . , min( k,, k,) + 1, have a unique solution for each 
value of i if and only if there exists a syzygy h i 1 + ~ 2 , 2  = h 3 ~ ~ h 3 ~ ~ .  We have degree h3A1 = 
degree h3A2 = 3. Then the above equations are equivalent with the following equations: 

p1 +p2+3p3 = kl P1+P2+3P4=kz 

~ 1 + 2 ~ 2 + 3 ~ 3 + 3 ~ 4 = m i ( A )  
for A E Do and i = 1,. . . , min(k,, k,)+ 1. Because we have three equations with four 
unknowns the solution is not unique. In fact we have for each value of i exactly i 
solutions as it follows from the single equation which remains after the determination 
of p1 = min( kl, k2)  - i + 1: p 2  + 3 min( p3, p4) = i - 1. Firstly we shall consider the case 
i = min( kl, k,) + 1 which give the minimum value 0 of p , .  In this case the minimum 
value of p 2  is 0 only if min(k,, k2) = 0 (mod 3). Then p 3  = [k1/3] and p4 = [k2/3]. The 
maximum value of p 2  is i - 1 = min(k,, k2) .  Then p 3  = [(k, -min(k,, k2))/3] and p4 = 
[(k2-min(k,, k2))/3]. Hence p3 = p 4 = 0  if and only if k, = k,. If we suppose that 
k, = k2 then from the fact that the generalised exponents are free of multiplicity we 
obtain the identities: 

for any value of k 2 .  Evidently, it is sufficient to impose only the case obtained for 
k2 = 3 which is the syzygy noticed above. But the existence of this syzygy implies the 
unicity of the solution in the general case. Indeed, using this syzygy we can replace, 
when i - 1 f 0 (mod 3), the factor ( h3Alh3Az)min(P3~P4) w ith the factor h ~ ~ ~ ~ 2 q ; P 4 )  (or 
equivalently to put min( p 3 ,  p4) = 0) and when i - 1 = 0 (mod 3) we can replace the 
factor h”,:,~,,, with the factor (or equivalently to put p 2 = 0 ) .  In both 
cases we have a unique solution: p ,  = min( k,, k,) - i + 1, p ,  = i - 1, min( p 3 ,  p4) = 0, 
max( p 3 ,  p4) = (max( kl, k,) - min(k,, k 2 ) ) / 3 ,  in the first case, and p ,  = min( k,, k,) - i + 1, 
p 2  = 0, p 3  = [( kl -pl) /3]  and p4 = [( k2 -p,) /3]  in the second case. QED. 

Remark 3. The existence of the integrity basis has been assumed without proof as an 
important ingredient in the description of all primitive completely prime ideals of 
U(sl(3, C ) )  in the paper [9] by Dixmier. 

Remark 4. From the remarks made in the introduction of [ 5 ]  it follows that the 
generating functions defined by Couture and Sharp [7] are also generating functions 
for the generalised exponents. 
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